Chapter 1 is the introductory chapter giving the basic principles of evolution.
์ฑ•ํ„ฐ 1์€ ์ง„ํ™”์˜ ๊ธฐ๋ณธ ์›๋ฆฌ๋ฅผ ์†Œ๊ฐœํ•˜๋Š” ์„œ๋ก ์ ์ธ ์žฅ์ž…๋‹ˆ๋‹ค.

It defines the genetic algorithm, the genetic algorithmโ€™s nature, its applicability, and the pros and cons.
์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ •์˜, ๋ณธ์งˆ, ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ, ์žฅ์ ๊ณผ ๋‹จ์ ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.


Chapter 2 will discuss genetic algorithm architecture, its main logical concepts: individual, fitness function, population, selection, crossover, and mutation.
์ฑ•ํ„ฐ 2์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ตฌ์กฐ์™€ ์ฃผ์š” ๋…ผ๋ฆฌ ๊ฐœ๋…์ธ ๊ฐœ์ฒด, ์ ํ•ฉ๋„ ํ•จ์ˆ˜, ๊ฐœ์ฒด๊ตฐ, ์„ ํƒ, ๊ต์ฐจ, ๋Œ์—ฐ๋ณ€์ด๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค.


Chapter 3 will focus solely on the Selection method.
์ฑ•ํ„ฐ 3์€ ์„ ํƒ ๋ฐฉ๋ฒ•์—๋งŒ ์ง‘์ค‘ํ•ฉ๋‹ˆ๋‹ค.

It explains the selection in the sense of evolution, how it works, and how it affects the evolution process.
์„ ํƒ์ด ์ง„ํ™” ๊ณผ์ •์—์„œ ์–ด๋–ป๊ฒŒ ์ž‘์šฉํ•˜๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€๋ฅผ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

We will cover the following selection methods: Tournament Selection, Proportional Selection, Stochastic Universal Sampling Selection, Rank Selection, Elite Selection.
๋‹ค์Œ๊ณผ ๊ฐ™์€ ์„ ํƒ ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค : ํ† ๋„ˆ๋จผํŠธ ์„ ํƒ, ๋น„๋ก€ ์„ ํƒ, ํ™•๋ฅ ์  ๋ฒ”์šฉ ์ƒ˜ํ”Œ๋ง ์„ ํƒ, ์ˆœ์œ„ ์„ ํƒ, ์—˜๋ฆฌํŠธ ์„ ํƒ.


Chapter 4 concentrates only on the Crossover operation.
์ฑ•ํ„ฐ 4๋Š” ๊ต์ฐจ ์—ฐ์‚ฐ์—๋งŒ ์ง‘์ค‘ํ•ฉ๋‹ˆ๋‹ค.

It describes the crossover, why it is important, how it works, and how it influences the solution search.
๊ต์ฐจ์˜ ์ •์˜, ์ค‘์š”์„ฑ, ์ž‘๋™ ๋ฐฉ์‹, ๊ทธ๋ฆฌ๊ณ  ํ•ด ํƒ์ƒ‰์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

We will study the following crossover methods: One Point Crossover, N-Point Crossover, Uniform Crossover, Linear Combination Crossover, Blend Crossover, Order Crossover, and Fitness Driven Crossover.
๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ต์ฐจ ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ•ฉ๋‹ˆ๋‹ค : ๋‹จ์ผ ์ง€์  ๊ต์ฐจ, N-์ง€์  ๊ต์ฐจ, ๊ท ์ผ ๊ต์ฐจ, ์„ ํ˜• ์กฐํ•ฉ ๊ต์ฐจ, ๋ธ”๋ Œ๋“œ ๊ต์ฐจ, ์ˆœ์„œ ๊ต์ฐจ, ์ ํ•ฉ๋„ ๊ธฐ๋ฐ˜ ๊ต์ฐจ.


Chapter 5 discusses the last evolution operation called Mutation.
์ฑ•ํ„ฐ 5์—์„œ๋Š” ๋งˆ์ง€๋ง‰ ์ง„ํ™” ์—ฐ์‚ฐ์ธ ๋Œ์—ฐ๋ณ€์ด๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

Evolution would be impossible without Mutation, and it is one of the most crucial parts of the genetic algorithm.
๋Œ์—ฐ๋ณ€์ด๊ฐ€ ์—†๋‹ค๋ฉด ์ง„ํ™”๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ด๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ์š”์†Œ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.

Following mutation methods are discussed: Random Deviation Mutation, Exchange Mutation, Shift Mutation, Bit Flip Mutation, Inversion Mutation, Shuffle Mutation, and Fitness Driven Mutation.
๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋Œ์—ฐ๋ณ€์ด ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค : ๋ฌด์ž‘์œ„ ํŽธ์ฐจ ๋Œ์—ฐ๋ณ€์ด, ๊ตํ™˜ ๋Œ์—ฐ๋ณ€์ด, ์ด๋™ ๋Œ์—ฐ๋ณ€์ด, ๋น„ํŠธ ๋ฐ˜์ „ ๋Œ์—ฐ๋ณ€์ด, ๋ฐ˜์ „ ๋Œ์—ฐ๋ณ€์ด, ์…”ํ”Œ ๋Œ์—ฐ๋ณ€์ด, ์ ํ•ฉ๋„ ๊ธฐ๋ฐ˜ ๋Œ์—ฐ๋ณ€์ด.


Chapter 6 will explore a way to compare the effectiveness of architectures of genetic algorithms.
์ฑ•ํ„ฐ 6์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌ์กฐ์˜ ํšจ๊ณผ๋ฅผ ๋น„๊ตํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค.

It defines what the best individual is.
์ตœ์  ๊ฐœ์ฒด์˜ ์ •์˜๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

Explore the Genetic Algorithm as a random variable and cover the handy technique to compare two random variables called Monte-Carlo simulation.
์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™•๋ฅ  ๋ณ€์ˆ˜๋กœ ํƒ๊ตฌํ•˜๊ณ , ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด๋ผ๋Š” ํ™•๋ฅ  ๋ณ€์ˆ˜ ๋น„๊ต ๊ธฐ๋ฒ•์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.


Chapter 7 is the last theoretical chapter and is dedicated to parameter tuning.
์ฑ•ํ„ฐ 7์€ ๋งˆ์ง€๋ง‰ ์ด๋ก ์  ์ฑ•ํ„ฐ์ด๋ฉฐ, ๋งค๊ฐœ๋ณ€์ˆ˜ ์กฐ์ •์— ์ง‘์ค‘ํ•ฉ๋‹ˆ๋‹ค.

It shows how global parameters like population size, crossover, and mutation probability govern genetic algorithm flow dynamics.
๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ, ๊ต์ฐจ ํ™•๋ฅ , ๋Œ์—ฐ๋ณ€์ด ํ™•๋ฅ ๊ณผ ๊ฐ™์€ ์ „์—ญ ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ๋ฆ„์— ์–ด๋–ป๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.

It studies each parameter influence and explains how each parameter affects the algorithm intuitively.
๊ฐ ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์—ฐ๊ตฌํ•˜๊ณ , ์ด๋ฅผ ์ง๊ด€์ ์œผ๋กœ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.


Chapter 8 starts the practical section of real-world problems.
์ฑ•ํ„ฐ 8๋ถ€ํ„ฐ๋Š” ์‹ค์ „ ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋Š” ์‹ค์šฉ์ ์ธ ์„น์…˜์ด ์‹œ์ž‘๋ฉ๋‹ˆ๋‹ค.

It covers one of the most common tasks - finding the black-box functionโ€™s maxima.
๊ฐ€์žฅ ์ผ๋ฐ˜์ ์ธ ๊ณผ์ œ ์ค‘ ํ•˜๋‚˜์ธ ๋ธ”๋ž™๋ฐ•์Šค ํ•จ์ˆ˜์˜ ์ตœ๋Œ€๊ฐ’ ์ฐพ๊ธฐ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

It covers which types of individuals can be created and design genetic algorithm architecture for this task.
์–ด๋–ค ์œ ํ˜•์˜ ๊ฐœ์ฒด๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”์ง€ ์„ค๋ช…ํ•˜๊ณ , ์ด ๊ณผ์ œ์— ์ ํ•ฉํ•œ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•ฉ๋‹ˆ๋‹ค.


Chapter 9 covers the first type of combinatorial problems, named binary encoded combinatorial problems.
์ฑ•ํ„ฐ 9์—์„œ๋Š” ์ฒซ ๋ฒˆ์งธ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ ์œ ํ˜•์ธ ์ด์ง„ ์ธ์ฝ”๋”ฉ๋œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

It designs the solution for the classical knapsack and schedule problem.
๊ณ ์ „์ ์ธ ๋ฐฐ๋‚ญ ๋ฌธ์ œ์™€ ์ผ์ • ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ์ฑ…์„ ์„ค๊ณ„ํ•ฉ๋‹ˆ๋‹ค.

And also, we will study a complex radar problem.
๋˜ํ•œ ๋ณต์žกํ•œ ๋ ˆ์ด๋” ๋ฌธ์ œ๋„ ์—ฐ๊ตฌํ•ฉ๋‹ˆ๋‹ค.


Chapter 10 studies the second type of combinatorial problem called ordered encoded combinatorial problems.
์ฑ•ํ„ฐ 10์—์„œ๋Š” ๋‘ ๋ฒˆ์งธ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ ์œ ํ˜•์ธ ์ˆœ์„œ ์ธ์ฝ”๋”ฉ๋œ ์กฐํ•ฉ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ์—ฐ๊ตฌํ•ฉ๋‹ˆ๋‹ค.

Here we will discuss the traditional traveling salesman problem; also, we will investigate an original football manager problem.
์—ฌ๊ธฐ์—์„œ๋Š” ์ „ํ†ต์ ์ธ ์™ธํŒ์› ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๋ฉฐ, ๋…์ฐฝ์ ์ธ ์ถ•๊ตฌ ๋งค๋‹ˆ์ € ๋ฌธ์ œ๋„ ์กฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค.


Chapter 11 shows some other types of problems.
์ฑ•ํ„ฐ 11์—์„œ๋Š” ๊ธฐํƒ€ ์—ฌ๋Ÿฌ ์œ ํ˜•์˜ ๋ฌธ์ œ๋ฅผ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.

It shows how to solve the general system of equations using genetic algorithms and another common graph coloring problem.
์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•ด ์ผ๋ฐ˜์ ์ธ ๋ฐฉ์ •์‹ ์‹œ์Šคํ…œ์„ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ ์ผ๋ฐ˜์ ์ธ ๊ทธ๋ž˜ํ”„ ์ƒ‰์น  ๋ฌธ์ œ๋ฅผ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.


Chapter 12 brings the genetic algorithm to another level, from Machine Learning to Deep Learning.
์ฑ•ํ„ฐ 12์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋จธ์‹ ๋Ÿฌ๋‹์—์„œ ๋”ฅ๋Ÿฌ๋‹์œผ๋กœ ํ™•์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃน๋‹ˆ๋‹ค.

It shows how to design an adaptive genetic algorithm that can be used as a universal approach with self-tuning feature during the evolution process.
์ง„ํ™” ๊ณผ์ •์—์„œ ์ž๋™ ์กฐ์ • ๊ธฐ๋Šฅ์„ ๊ฐ–์ถ˜ ์ ์‘ํ˜• ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์„ค๋ช…ํ•ฉ๋‹ˆ๋‹ค.


Chapter 13 is all about performance.
์ฑ•ํ„ฐ 13์€ ์„ฑ๋Šฅ ์ตœ์ ํ™”์— ๋Œ€ํ•œ ๋‚ด์šฉ์ž…๋‹ˆ๋‹ค.

It shows how to speed up the genetic algorithm with various techniques.
์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐ€์†ํ™”ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•ฉ๋‹ˆ๋‹ค.


โœจ ์ •๋ฆฌ

โ–ธ Chapter 1 - ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ์š” (๊ฐœ๋…, ์žฅ๋‹จ์ )
โ–ธ Chapter 2 - ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌ์กฐ (๊ฐœ์ฒด, ์ ํ•ฉ๋„, ์„ ํƒ, ๊ต์ฐจ, ๋Œ์—ฐ๋ณ€์ด)
โ–ธ Chapter 3 - ์„ ํƒ ๋ฐฉ๋ฒ• (ํ† ๋„ˆ๋จผํŠธ, ๋น„๋ก€, ์—˜๋ฆฌํŠธ ๋“ฑ)
โ–ธ Chapter 4 - ๊ต์ฐจ ๋ฐฉ๋ฒ• (๋‹จ์ผ ์ง€์ , ๊ท ์ผ, ์ˆœ์„œ ๋“ฑ)
โ–ธ Chapter 5 - ๋Œ์—ฐ๋ณ€์ด ๋ฐฉ๋ฒ• (๋น„ํŠธ ๋ฐ˜์ „, ์…”ํ”Œ ๋“ฑ)
โ–ธ Chapter 6 - ์„ฑ๋Šฅ ๋น„๊ต (๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜)
โ–ธ Chapter 7 - ๋งค๊ฐœ๋ณ€์ˆ˜ ์กฐ์ • (๊ฐœ์ฒด๊ตฐ ํฌ๊ธฐ, ๊ต์ฐจ์œจ, ๋Œ์—ฐ๋ณ€์ด์œจ)
โ–ธ Chapter 8 - ๋ธ”๋ž™๋ฐ•์Šค ํ•จ์ˆ˜ ์ตœ์ ํ™”
โ–ธ Chapter 9 - ์ด์ง„ ์ธ์ฝ”๋”ฉ ์กฐํ•ฉ ๋ฌธ์ œ (๋ฐฐ๋‚ญ, ์ผ์ •, ๋ ˆ์ด๋” ๋ฌธ์ œ)
โ–ธ Chapter 10 - ์ˆœ์„œ ์ธ์ฝ”๋”ฉ ๋ฌธ์ œ (์™ธํŒ์›, ์ถ•๊ตฌ ๋งค๋‹ˆ์ € ๋ฌธ์ œ)
โ–ธ Chapter 11 - ๋ฐฉ์ •์‹, ๊ทธ๋ž˜ํ”„ ๋ฌธ์ œ ํ•ด๊ฒฐ
โ–ธ Chapter 12 - ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ + ๋จธ์‹ ๋Ÿฌ๋‹/๋”ฅ๋Ÿฌ๋‹
โ–ธ Chapter 13 - ์„ฑ๋Šฅ ์ตœ์ ํ™” ๊ธฐ๋ฒ•